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Abstract: The complexity of communications and signal processing circuits increases every year. This is made possible by the 

CMOS technology scaling that enables the integration of more and more transistors on a single device. This increased complexity 

makes the circuits more vulnerable to errors. At the same time, the scaling means that transistors operate with lower voltages and are 

more susceptible to errors caused by noise and manufacturing variations. As technology scales, it enables more complex systems that 

incorporate many filters. In those complex systems, it is common that some of the filters operate in parallel. Soft errors pose a 

reliability threat to modern electronic circuits. This makes protection against soft errors a requirement for many applications. 

Communications and signal processing systems are no exceptions to this trend. For some applications, an interesting option is to use 

algorithmic-based fault tolerance (ABFT) techniques that try to exploit the algorithmic properties to detect and correct errors. Signal 

processing and communication applications are well suited for ABFT. A general scheme to protect parallel filters is presented. 

Parallel filters with the same response that process different input signals are considered. The new approach is based on the 

application of error correction codes (ECCs) using each of the filter outputs as the equivalent of a bit in and ECC codeword. This is a 

generalization of the scheme presented and enables more efficient implementations when the number of parallel filters is large. The 

scheme can also be used to provide more powerful protection using advanced ECCs that can correct failures in multiples modules.  
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I. INTRODUCTION 
   FIR filters are one of two primary types of digital filters used 

in digital signal processing (DSP) applications, the other type 

being IIR. High performance FIR filters have applications in 

several video processing and digital communications systems. 

In some applications, the FIR filter circuit must be able to 

operate at high sample rates, while in other applications, the FIR 

filter circuit must be a low-power circuit operating at moderate 

sample rates. The low-power or low-area techniques developed 

specifically for digital filters can be found in [1, 2, 3, 4, 5, 6, 7].      

Traditional FIR filter uses some parallel processing technique to 

either increase the effective throughput or to reduce the power 

consumption of the original filter. Parallel processing involves 

the replication of hardware units. Here the hardware 

implementation cost is directly proportional to the block size. At 

the same time if the design area is very limited this technique is 

not applicable. Therefore, in order to reduce the chip size and to 

limit the silicon area  required to implement the FIR filter it is 

necessary to realize a new parallel FIR filtering structure that 

consume less area  than traditional parallel FIR filtering. It is 

common in DSP to say that a filter input and output signals are 

in time domain. This is because signals are usually created by 

sampling at regular intervals of time. But this is not the only 

way sampling can take place. The second most common way of 

sampling is at equal intervals in space. For example imagine 

taking simultaneous readings from an array of strain sensors 

mounted at one centimeter increments along the length of an 

aircraft wing.  

     Many other domains are possible; however, time and space 

are by far the most common. When you see the term time 

domain in DSP, remember that it may actually refer to samples 

taken over time, or it may be a general reference to any domain 

that the samples are taken in. Every linear filter has an impulse 

response, a step response and a frequency response. Each of 

these responses contains complete information about the filter, 

but in a different form. If one of three is specified, the other two 

are fixed and can be directly calculated. All three of these 

representations are important, because they describe how the 

filter will react under different circumstances. The most 

straightforward way to implement a digital filter is by 

convolving the input signal with the digital filter’s impulse 

response. All possible linear filters can be made in this manner. 

When the impulse response is used in this way, filters designers 

give it a special name: the filter kernel. There is also another 

way to make digital filters, called recursion. When a filter is 

implemented by a convolution, each sample in the output is 

calculated by weighting the samples in the input, and adding 

then together. Recursive filters are an extension of this, using 

previously calculated values from the output, besides points 

from the input. Instead of using a filter kernel, recursive filters 

are defined by a set of recursion coefficients. For now the 

important point is that all linear filters have an impulse 

response, even if you don’t use it to implement the filter. To 

find the impulse response of a recursive filter, simply feed in the 

impulse and see what comes out.  



B. UMADEVI, RAMESH BABU 

International Journal of VLSI System Design and Communication Systems 

Volume.04, IssueNo.09, September-2016, Pages: 0781-0788 

  The impulse responses of recursive filters are composed of 

sinusoids that exponentially decay in amplitude. In principle, 

this makes their impulse responses infinitely long. However the 

amplitude eventually drops below the round off noise of the 

system, and the remaining samples can be ignored. Because of 

these characteristics, recursive filters are also called Infinite 

impulse response or IIR filters. In comparison, filters carried out 

by convolution are called Finite impulse response or FIR filters.  

II. ERROR CORRECTING CODES 

A. Introduction 

      Codes that correct errors are essential to modern civilization 

and are used in devices from modems to planetary satellites. 

The theory is mature, difficult, and mathematically oriented, 

with tens of thousands of scholarly papers and books, but this 

project will describe only a simple and elegant code, discovered 

in 1949. 

 

B. Literature survey  

    A burst of length I is defined as a vector whose nonzero 

components are confined to /consecutive digit positions, the first 

and last of which are nonzero. For example, the error vector e = 

(0 0 0 0 1 0 1 1 0 1 0 0 0 0 0) is a burst of length 6. A linear 

code that is capable of correcting all error bursts of length /or 

less but not all error bursts of length /+ 1 is called an 1-burst-

error-correcting code, or the code is said to have burst-error-

correcting capability 1. It is clear that for given code length it 

and burst-error-correcting capability 1, it is desirable to 

construct an (a, k) code with as small a redundancy n - k as 

possible. Next, we establish certain restrictions on n - k for 

given 1, or restrictions on I for Given 17 - k. 

 

THEOREM 1: A necessary condition for an (a, k) linear code 

to be able to correct all burst errors of length I or less is that no 

burst of length 2/or less can be a codeword. 

 

Proof: Suppose that there exists a burst r of length 2/or less as a 

codeword. This codeword v can be expressed as a vector sum of 

two bursts a and w of length 1 or less (except the degenerate 

case, in which v is a burst of length 1). Then, a and w must be in 

the same coset of a standard array for this code. If one of these 

two vectors is used as a coset leader (correctable error pattern), 

the other will be an uncorrectable error burst. As a result, this 

code will not be able to correct all error bursts of length /or less. 

Therefore, in order to correct all error bursts of length /or less, 

no burst of length 2/or less can be a codeword. 

 

THEOREM 2: The number of parity-check digits of an (n, k) 

linear code that has no burst of length b or less as a codeword is 

at least b (i.e., - k > b). 

 

Proof: Consider the vectors whose nonzero components are 

confined to the first b digit positions. There are a total of 2b of 

them. N0 two such vectors can be in the same coset of a standard 

array for this code otherwise, their vector sum, which is a burst 

of length b or less, would be a codeword. Therefore, these 2/) 

vectors must be in '21) distinct cosets. There are a total of ',"-k 

cosets for an. (a, k) code. Thus, a - k must be at least equal to b 

(i.e., a - k > b). It follows from Theorems 1 and 2 that there 

must be a restriction on the number of parity-check digits of an 

1-burst-error-correcting code. 

 

THEOREM 3: The number of parity-check digits of an l-burst-

error-correcting code must be at least 2/; that is, 

 

Proof: For a given n and k, Theorem 3 implies that the burst-

error-correcting capability of an (a k) code is at most [(r - k)/2_l 

that is,- k this is an upper bound on the burst-error-correcting 

capability of an (n, k) code and is called the Reiger bound [5]. 

Codes that meet the Reiger bound are said to be optimal. The 

ratio is used as a measure of the burst-error-correcting 

efficiency of a code. An optimal code has burst-error-correcting 

efficiency equal to 1. 

 

    It is possible to show that if an (a, k) code is designed to 

correct all burst errors of length /or less and simultaneously to 

detect all burst errors of length d > / or less, the number of 

parity-check digits of the code must be at least I d.An/-burst-

error-correcting cyclic code can most easily be decoded by the 

error-trapping technique presented in Section 5.7, with a slight 

variation. Suppose that a codeword y(X) from an /-burst-error-

correcting (a, k) cyclic code is transmitted. Let r(X) and e(X) be 

the received and error vectors, respectively. Let be the 

syndrome of T(X). If the errors in e(X) are confined to the 1 

high-order parity-check digit positions, X"-1.-1, …, X"-k-2, X"-

k-1, then the /high-order syndrome digits, ..5„-k-1, - s„-k-i, 

match the errors of e(X), and the a - k – 1 low-order syndrome 

digits, so, St, ° s„-k--/-1, are zeros. Suppose that the errors in 

e(X) are not confined to the positions X"-k-i, • ..,, X" k 2, X"-k-

1 of r(X) but are confined to /consecutive positions of r(X) 

(including the end-around case). Then, after a certain number of 

cyclic shifts of r(X), say i cyclic shifts, the errors will be shifted 

to the positions X"-k-/…, X"-k-2, X"-k-I. of T(i) (X), the ith 

shift of T(X). Let s(i) (X) be the syndrome of v(i) (X). Then, the 

first /high-order digits of sO (X) match the errors at the 

positions X"-k-1, …, X"-k-2, X"-k-I of z(i) (X), and the rr - k - 

/low-order digits of s(i) (X) are zeros. Using these facts, we may 

trap the errors in the syndrome register by cyclic shifting r(X). 

An error-trapping decoder for an /-burst-correcting cyclic code 

is shown in Fig.1, where the received vector is shifted into the 

syndrome register from the left end. The decoding procedure is 

as follows: 

 
Fig.1. An error-trapping decoder for burst-error-correcting 

codes. 
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Step 1: The received vector r(X) is shifted into the syndrome 

and buffer registers simultaneously. (If we do not want to 

decode the received parity-check digits, the buffer register needs 

only k stages.) As soon as r(X) has been shifted into the 

syndrome register, the syndrome s(X) is formed. 

Step 2:  The syndrome register starts to shift with gate 2 on. As 

soon as its - k – 1 leftmost stages contain only zeros, its 1 

rightmost stages contain the burst-error pattern. The error 

correction begins. There are three cases to be considered. 

Step 3:  If the n - k – 1 leftmost stages of the syndrome register 

contain all zeros after the ith shift for 0 < i < n - k - I, the errors 

of the burst e(X) are confined to the parity-check positions of 

r(X). In this event, the k received information digits in the 

buffer register are error-free. Gate 4 is then activated, and the k 

error-free information digits in the buffer are shifted out to the 

data sink If the a - k -1 leftmost stages of the syndrome register 

never contain all zeros during the first n - k -1 shifts of the 

syndrome register, the error burst is not confined to the - k 

parity-check positions of r(X). 

Step 4:  If the n - k -1 leftmost stages of the syndrome register 

contain all zeros after the (7 - k -1+ i)th shift of the syndrome 

register for 1 < i < 1, the error burst is confined to positions X"', 

…• Xi-1, of r(X). (This is an end-around burst). In this event, 

the /- i digits contained in the 1- i rightmost stages of the 

syndrome register match the errors at the parity-check positions, 

X°, X I, …, X/-i-1 of r(X), and the i digits contained in the next 

i stages of the syndrome register match the errors at the 

positions X"-', …, X"-2, X"-1 of r(X). At this instant, a clock 

starts to count from (n-k-l+i+1). The syndrome register is then 

shifted (in step with the clock) with gate 2 turned off. As soon 

as the clock has counted up to a - k, the i rightmost digits in the 

syndrome register match the errors at the positions X"-i, …, X"-

2, X"-1 of r(X). Gates 3 and 4 are then activated. The received 

information digits are read out of the buffer register and 

corrected by the error digits shifted out from Tec syndrome 

register. 

Step 5:  If the a - k – 1 leftmost stages of the syndrome register 

never contain all zeros by the time that the syndrome register 

has been shifted a k times, the received information highs are 

read out of the buffer register one at a time with. gate 4 

activated. At the same time the syndrome register is shifted with 

gate 2 activated. As soon as the k - j leftmost stages, of the 

syndrome register contain all zeros, tire digits in the rightmost 

stages of the syndrome register match the errors in the net 

received information digits to come out of the buffer register. 

Gate 3 is then activated, and the erroneous information digits 

are corrected by the digits coming out from the syndrome 

register with gate 2 disabled. 

    If the n–k–l leftmost stages of the syndrome register never 

contain all zeros by the time the k information digits have been 

read out of the buffer, an uncorrectable burst of errors has been 

detected. With the decoder just described, the decoding process 

takes Pat clock cycles; the first a clock cycles are required for 

syndrome computation, and the next a clock cycles are needed 

for error trapping and error correction. The n clock cycles for 

syndrome computation are concurrent with the reception of the 

received vector from the channel; no time delay occurs in this 

operation. The second a clock cycles for error trapping and 

correction represent decoding delay. In this decoder the received 

vector is shifted into the syndrome register from the left end. If 

the received vector is shifted into the syndrome register from 

the right end, the decoding operation will be slightly different. 

This decoder corrects only burst errors of length /or less. The 

number of these burst-error patterns is n21/2', which for large a, 

is only a small fraction of 2"2 correctable error patterns (coset 

leaden). It is possible to modify the decoder is such a way that it 

corrects all the correctable -burst errors of length a - k or less. 

That is, besides correcting all the bursts of length/or less, the 

decoder also corrects those bursts of length /+ 1 to a - It that are 

used as coset leaders. This modified decoder operates as 

follows. The entire received rector is lint shifted into the 

syndrome register. Before performing the error Correction, the 

syndrome register is cyclically shifted a time (with feedback 

connections operative). During this cycling the length b of the 

shortest burst that appears in the h rightmost stages of the 

syndrome register is recorded by a Counter. This burst is 

assumed to be the error burst added by the channel. Having 

completed these pre-correction shifts, the decoder begins its 

correction process. The syndromes register starts to shift again. 

As soon as the shortest burst reappears in the b rightmost stages 

of the syndrome register, the decoder starts to make corrections 

as described earlier. This decoding is an optimum decoding for 

burst-error-correcting codes that was proposed by Gallager. 

C. Description of the Hamming Code 

     Richard Hamming found a beautiful binary code that will 

correct any single error and will detect any double error (two 

separate errors).The Hamming code has been used for computer 

RAM, and is a good choice for randomly occurring errors. (If 

errors come in bursts, there are other good codes.) Unlike most 

other error-correcting codes, this one is simple to understand. 

The code uses extra redundant bits to check for errors, and 

performs the checks with special check equations. A parity 

check equation of a sequence of bits just adds the bits of the 

sequence and insists that the sum be even (for even parity) or 

odd (for odd parity). This section uses even parity. 

Alternatively, one says that the sum is taken modulo 2 (divide 

by 2 and take the remainder), or one says that the sum is taken 

over the integers mod 2, Z2.  A simple parity check will detect if 

there has been an error in one bit position, since even parity will 

change to odd parity. (Any odd number of errors will show up 

as if there were just 1 error, and any even number of errors will 

look the same as no error). One has to force even parity by 

adding an extra parity bit and setting it either to 1 or to 0 to 

make the overall parity come out even. It is important to realize 

that the extra parity check bit participates in the check and is 

itself checked for errors, along with the other bits.  

   The Hamming code uses parity checks over a portion of the 

positions in a block. Suppose there are bits in consecutive 

positions from 1 to n-1. The positions whose position number is 

a power of 2 are used as check bits, whose value must be 

determined from the data bits. Thus the check bits are in 

positions 1, 2, 4, 8, 16, ..., up to the largest power of 2 that is 
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less than or equal to the largest bit position. The remaining 

positions are reserved for data bits. Each check bit has a 

corresponding check equation that covers a portion of all the 

bits, but always includes the check bit itself. Consider the binary 

representation of the position numbers: 1 = 12, 2 = 102, 3 = 112, 

4 = 1002, 5 = 1012, 6 = 1102, and so forth. If the position 

number has a 1 as its rightmost bit, then the check equation for 

check bit 1 covers those positions. If the position number has a 

1 as its next-to-rightmost bit, then the check equation for check 

bit 2 covers those positions. If the position number has a 1 as its 

third-from-rightmost bit, then the check equation for check bit 4 

covers those positions. Continue in this way through all check 

bits. Table 1 summarizes this pattern. 

 

Table 1. Position of the parity checks for the first 17 

positions of the Hamming code                             (Check bits 

are in positions 1, 2, 4, 8, and 16, in red italic). 

 
   Table 2: The below table assumes one starts with data bits 

1101101 (in black below). The check equations above are used 

to determine values for check bits in positions 1, 2, 4, and 8, to 

yield the word 11101010101 below, with check bits in red italic 

here and below.  

 

Table 2. Implementation of Hamming code for data bits 

1101101. 

 
     Intuitively, the check equations allow one to ``zero-in'' on the 

position of a single error. For example, suppose a single bit is 

transmitted in error. If the first check equation fails, then the 

error must be in an odd position, and otherwise it must be in an 

even position. In other words, if the first check fails, the 

position number of the bit in error must have its rightmost bit 

(in binary) equal to 1; otherwise it is zero. Similarly the second 

check gives the next-to-rightmost bit of the position in error, 

and so forth. Table 3: The below table gives the result of a 

single error in the decimal position 11 (changed from a1toa0). 

Three of the four parity checks fail, as shown below. Adding the 

decimal position number of each failing check gives the position 

number of the error bit, decimal 11 in this case the below 

discussion shows how to get single-error correction with the 

Hamming code. One can also get double-error detection by 

using a single extra check bit, which is in position 0. (All other 

positions are handled as above.) The check equation in this case 

covers all bits, including the new bit in position 0.  

 

Table 3. Results of a single error in decimal position 11 

 
  In case of a single error, this new check will fail. If only the 

new equation fails, but none of the others, then the position in 

error is the new 0th check bit, so a single error of this new bit 

can also be corrected. In case of two errors, the overall check 

(using position 0) will pass, but at least one of the other check 

equations must fail. This is how one detects a double error. In 

this case there is not enough information present to say anything 

about the positions of the two bits in error. Three or more errors 

at the same time can show up as no error, as two errors detected, 

or as a single error that is ``corrected'' with a bogus correction. 

Notice that the Hamming code without the extra 0th check bit 

would correct a double error in some bogus position as if it were 

a single error. Thus the extra check bit and the double error 

detection are very important for this code. Notice also that the 

check bits themselves will also be corrected if one of them is 

transmitted in error (without any other errors). 

 

III. IMPLEMENTATION OF PROPOSED SYSTEM 

 A discrete time filter implements the following equation: 

 

                        𝑦 𝑛 =  𝑥[𝑛 − 𝑙]∞
𝑙=0 . ℎ[𝑙]                            (1) 

 

where x[n] is the input signal, y[n] is the output, and h[l] is the 

impulse response of the filter. When the response h[l] is 

nonzero, only for a finite number of samples, the filter is known 

as a FIR filter, otherwise the filter is an infinite impulse 

response (IIR) filter. There are several structures to implement 

both FIR and IIR filters. 

   In the following, a set of k parallel filters with the same 

response and different input signals are considered. These 

parallel filters are illustrated in Fig. 2. This kind of filter is 
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found in some communication systems that use several channels 

in parallel. In data acquisition and processing applications is 

also common to filter several signals with the same response.         

An interesting property for these parallel filters is that the sum 

of any combination of the outputs yi [n] can also be obtained by 

adding the corresponding inputs xi [n] and filtering the resulting 

signal with 

 
Fig.2. Parallel filters with the same response. 

the same filter h[l]. For example 

          𝑦1 𝑛 + 𝑦2 𝑛 =   𝑥1 𝑛 − 𝑙 + 𝑥2 𝑛 − 𝑙  . ℎ[𝑙]∞
𝑙=0       (2) 

 

    This simple observation will be used in the following to 

develop the proposed fault tolerant implementation. The new 

technique is based on the use of the ECCs. A simple ECC takes 

a block of k bits and produces a block of n bits by adding n−k 

parity check bits. The parity check bits are XOR combinations 

of the k data bits. By properly designing those combinations it is 

possible to detect and correct errors. As an example, let us 

consider a simple Hamming code with k = 4 and n = 7. In this 

case, the three parity check bits p1, p2, p3 are computed as a 

function of the data bits d1, d2, d3, d4 as follows: 

𝑝1 = 𝑑1⨁𝑑2⨁𝑑3 

𝑝2 = 𝑑1⨁𝑑2⨁𝑑4 

                                     𝑝3 = 𝑑1⨁𝑑3⨁𝑑4               (3) 

    The data and parity check bits are stored and can be 

recovered later even if there is an error in one of the bits. This is 

done by re-computing the parity check bits and comparing the 

results with the values stored. In the example considered, an 

error on d1 will cause errors on the three parity checks; an error 

on d2 only in p1 and p2; an error on d3 in p1 and p3; and finally 

an error on d4 in p2 and p3. Therefore, the data bit in error can 

be located and the error can be corrected. This is commonly 

formulated in terms of the generating G and parity check H 

matrixes. For the Hamming code considered in the example, 

those are 

                   𝐺 =  

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

1
1
1
0

1
1
0
1

1
0
1
1

    (4) 

 

                    𝐻 =  
1
1
1

1
1
0

1
0
1

0
1
1

1
0
0

0
1
0

0
0
1
    (5) 

       Encoding is done by computing y = x • G and error 

detection is done by computing s = y • H
T
, where the operator • 

is based on module two addition (XOR) and multiplication. 

Correction is done using the vector s, known as syndrome, to 

identify the bit in error. The correspondence of values of s to 

error position is captured in Table 4. 

TABLE 4. Error Location in the Hamming Code 

 

 
Fig.3. Proposed scheme for four filters and a Hamming code 

    Once the erroneous bit is identified, it is corrected by simply 

inverting the bit. This ECC scheme can be applied to the 

parallel filters considered by defining a set of check filters zj. 

For the case of four filters y1, y2, y3, y= and the Hamming code, 

the check filters would be 

𝑧1 𝑛 =   𝑥1 𝑛 − 𝑙 + 𝑥2 𝑛 − 𝑙 + 𝑥3 𝑛 − 𝑙  

∞

𝑙=0

. ℎ[𝑙] 

𝑧2 𝑛 =   𝑥1 𝑛 − 𝑙 + 𝑥2 𝑛 − 𝑙 + 𝑥4 𝑛 − 𝑙  

∞

𝑙=0

. ℎ[𝑙] 

       𝑧3 𝑛 =   𝑥1 𝑛 − 𝑙 + 𝑥3 𝑛 − 𝑙 + 𝑥4 𝑛 − 𝑙  ∞
𝑙=0 . ℎ[𝑙]  (6) 

 

and the checking is done by testing if 

𝑧1 𝑛 = 𝑦1 𝑛 + 𝑦2 𝑛 + 𝑦3 𝑛  
𝑧2 𝑛 = 𝑦1 𝑛 + 𝑦2 𝑛 + 𝑦4 𝑛  

                          𝑧3 𝑛 = 𝑦1 𝑛 + 𝑦3 𝑛 + 𝑦4 𝑛               (7) 

   For example, an error on filter y1 will cause errors on the 

checks of z1, z2, and z3. Similarly, errors on the other filters will 

cause errors on a different group of zi. Therefore, as with the 

traditional ECCs, the error can be located and corrected. The 

overall scheme is illustrated on Fig. 3. It can be observed that 
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correction is achieved with only three redundant filters. For the 

filters, correction is achieved by reconstructing the erroneous 

outputs using the rest of the data and check outputs. For 

example, when an error on y1 is detected, it can be corrected by 

making 

                𝑦𝑐1 𝑛 = 𝑧1 𝑛 − 𝑦2 𝑛 − 𝑦3 𝑛          (8) 

   Similar equations can be used to correct errors on the rest of 

the data outputs. In our case, we can define the check matrix as 

                         𝐻 =  
1
1
1

1
1
0

1
0
1

0
1
1

−1
0
0

0
−1
0

0
0
−1

              (9) 

and calculate s = yH
T
 to detect errors. Then, the vector s is also 

used to identify the filter in error. In our case, a nonzero value in 

vector s is equivalent to 1 in the traditional Hamming code. A 

zero value in the check corresponds to a 0 in the traditional 

Hamming code. 

      It is important to note that due to different finite precision 

effects in the original and check filter implementations, the 

comparisons in (7) can show small differences. Those 

differences will depend on the quantization effects in the filter 

implementations that have been widely studied for different 

filter structures. The interested reader is referred to for further 

details. Therefore, a threshold must be used in the comparisons 

so that values smaller than the threshold are classified as 0. This 

means that small errors may not be corrected. This will not be 

an issue in most cases as small errors are acceptable. The 

detailed study of the effect of these small errors on the signal to 

noise ratio at the output of the filter is left for future work. The 

reader can get more details on this type of analysis. With this 

alternative formulation, it is clear that the scheme can be used 

for any number of parallel filters and any linear block code can 

be used. The approach is more attractive when the number of 

filters k is large. For example, when k = 11, only four redundant 

filters are needed to provide single error correction. This is the 

same as for traditional ECCs for which the overhead decreases 

as the block size increases. 

   The additional operations required for encoding and decoding 

are simple additions, subtractions, and comparisons and should 

have little effect on the overall complexity of the circuit. This is 

illustrated in which a case study is presented. In the discussion, 

so far the effect of errors affecting the encoding and decoding 

logic has not been considered. The encoder and decoder include 

several additions and subtractions and therefore the possibility 

of errors affecting them cannot be neglected. Focusing on the 

encoders, it can be seen that some of the calculations of the zi 

share adders. For example, looking at (6), z1 and z2 share the 

term y1 + y2. Therefore, an error in that adder could affect both 

z1 and z2 causing a mis-correction on y2. To ensure that single 

errors in the encoding logic will not affect the data outputs, one 

option is to avoid logic sharing by computing each of the zi 

independently. In that cases, errors will only affect one of the zi 

outputs and according to Table I, the data outputs yj will not be 

affected. Similarly, by avoiding logic sharing, single errors in 

the computation of the s vector will only affect one of its bits. 

The final correction elements such as that in (8) need to be 

tripled to ensure that they do not propagate errors to the outputs. 

However, as their complexity is small compared with that of the 

filters, the impact on the overall circuit cost will be low. This is 

confirmed by the results presented for a case study. 

IV, SIMULATION RESULTS 

 
Fig.4. Program Window. 

 
Fig.5. RTL Schematic generater 

     In this Fig6 shows, the block diagram of a top level circuit 

whitch consisting of  inputs of parallel filter and outputs of 

parallel filter. X1,X2,X3,X4 are the input of the parallel filter,h 

is the impulse response of the parallel filter,Y1,Y2,Y3,Y4 are 

the output of the parallel filter,P1,P2,P3, are thecheck bits of the 

output response.   

 
Fig.6. RTL Schematic of Parallel Filter. 
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    In this Fig7 shows, the RTL Schematic of a top module 

circuit whitch consisting of internal schematic of acircuit.  

 
Fig.7. Internal RTL Schematic. 

RTL Schematic for Parallel Filtesr trigger: 

 
Fig.8. RTL Schematic Trigger 

 
Fig.9. RTL Schematic overview 

V. CONCLUSION AND FUTURE SCOPE 

A. Conclusion 

    This brief has presented a new scheme to protect parallel 

filters that are commonly found in modern signal processing 

circuits. The approach is based on applying ECCs to the parallel 

filters outputs to detect and correct errors. The scheme can be 

used for parallel filters that have the same response and process 

different input signals. A case study has also been discussed to 

show the effectiveness of the scheme in terms of error 

correction and also of circuit overheads. The technique provides 

larger benefits when the number of parallel filters is large. 

 

B. Future Scope 

   The proposed scheme can also be applied to the IIR filters. 

Future work will consider the evaluation of the benefits of the 

proposed technique for IIR filters. The extension of the scheme 

to parallel filters that have the same input and different impulse 

responses is also a topic for future work. The proposed scheme 

can also be combined with the reduced precision replica 

approach presented in [3] to reduce the overhead required for 

protection. This will be of interest when the number of parallel 

filters is small as the cost of the proposed scheme is larger in 

that case. Another interesting topic to continue this brief is to 

explore the use of more powerful multi bit ECCs, such as Bose–

Chaudhuri–Hocquenghem codes, to correct errors on multiple 

filters. 
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