

ISSN 2322-0929

Vol.04, Issue.09,

September-2016,

Pages:0781-0788

 www.ijvdcs.org

Copyright @ 2016 IJVDCS. All rights reserved.

An Efficient Fault Tolerant Parallel Filters Based on Error Correction Codes
 B. UMADEVI

1
, RAMESH BABU

2

1
PG Scholar, Dept of ECE (VLSI), GATES Institute of Technology, Gooty, Andhra Pradesh, India.

2
Assistant Professor, Dept of ECE, GATES Institute of Technology, Gooty, Andhra Pradesh, India.

Abstract: The complexity of communications and signal processing circuits increases every year. This is made possible by the

CMOS technology scaling that enables the integration of more and more transistors on a single device. This increased complexity

makes the circuits more vulnerable to errors. At the same time, the scaling means that transistors operate with lower voltages and are

more susceptible to errors caused by noise and manufacturing variations. As technology scales, it enables more complex systems that

incorporate many filters. In those complex systems, it is common that some of the filters operate in parallel. Soft errors pose a

reliability threat to modern electronic circuits. This makes protection against soft errors a requirement for many applications.

Communications and signal processing systems are no exceptions to this trend. For some applications, an interesting option is to use

algorithmic-based fault tolerance (ABFT) techniques that try to exploit the algorithmic properties to detect and correct errors. Signal

processing and communication applications are well suited for ABFT. A general scheme to protect parallel filters is presented.

Parallel filters with the same response that process different input signals are considered. The new approach is based on the

application of error correction codes (ECCs) using each of the filter outputs as the equivalent of a bit in and ECC codeword. This is a

generalization of the scheme presented and enables more efficient implementations when the number of parallel filters is large. The

scheme can also be used to provide more powerful protection using advanced ECCs that can correct failures in multiples modules.

Keywords: AES, Effective Implementation, Algorithm, Reversible, Logic, Xilinx, ISE.

I. INTRODUCTION
 FIR filters are one of two primary types of digital filters used

in digital signal processing (DSP) applications, the other type

being IIR. High performance FIR filters have applications in

several video processing and digital communications systems.

In some applications, the FIR filter circuit must be able to

operate at high sample rates, while in other applications, the FIR

filter circuit must be a low-power circuit operating at moderate

sample rates. The low-power or low-area techniques developed

specifically for digital filters can be found in [1, 2, 3, 4, 5, 6, 7].

Traditional FIR filter uses some parallel processing technique to

either increase the effective throughput or to reduce the power

consumption of the original filter. Parallel processing involves

the replication of hardware units. Here the hardware

implementation cost is directly proportional to the block size. At

the same time if the design area is very limited this technique is

not applicable. Therefore, in order to reduce the chip size and to

limit the silicon area required to implement the FIR filter it is

necessary to realize a new parallel FIR filtering structure that

consume less area than traditional parallel FIR filtering. It is

common in DSP to say that a filter input and output signals are

in time domain. This is because signals are usually created by

sampling at regular intervals of time. But this is not the only

way sampling can take place. The second most common way of

sampling is at equal intervals in space. For example imagine

taking simultaneous readings from an array of strain sensors

mounted at one centimeter increments along the length of an

aircraft wing.

 Many other domains are possible; however, time and space

are by far the most common. When you see the term time

domain in DSP, remember that it may actually refer to samples

taken over time, or it may be a general reference to any domain

that the samples are taken in. Every linear filter has an impulse

response, a step response and a frequency response. Each of

these responses contains complete information about the filter,

but in a different form. If one of three is specified, the other two

are fixed and can be directly calculated. All three of these

representations are important, because they describe how the

filter will react under different circumstances. The most

straightforward way to implement a digital filter is by

convolving the input signal with the digital filter’s impulse

response. All possible linear filters can be made in this manner.

When the impulse response is used in this way, filters designers

give it a special name: the filter kernel. There is also another

way to make digital filters, called recursion. When a filter is

implemented by a convolution, each sample in the output is

calculated by weighting the samples in the input, and adding

then together. Recursive filters are an extension of this, using

previously calculated values from the output, besides points

from the input. Instead of using a filter kernel, recursive filters

are defined by a set of recursion coefficients. For now the

important point is that all linear filters have an impulse

response, even if you don’t use it to implement the filter. To

find the impulse response of a recursive filter, simply feed in the

impulse and see what comes out.

B. UMADEVI, RAMESH BABU

International Journal of VLSI System Design and Communication Systems

Volume.04, IssueNo.09, September-2016, Pages: 0781-0788

 The impulse responses of recursive filters are composed of

sinusoids that exponentially decay in amplitude. In principle,

this makes their impulse responses infinitely long. However the

amplitude eventually drops below the round off noise of the

system, and the remaining samples can be ignored. Because of

these characteristics, recursive filters are also called Infinite

impulse response or IIR filters. In comparison, filters carried out

by convolution are called Finite impulse response or FIR filters.

II. ERROR CORRECTING CODES

A. Introduction

 Codes that correct errors are essential to modern civilization

and are used in devices from modems to planetary satellites.

The theory is mature, difficult, and mathematically oriented,

with tens of thousands of scholarly papers and books, but this

project will describe only a simple and elegant code, discovered

in 1949.

B. Literature survey

 A burst of length I is defined as a vector whose nonzero

components are confined to /consecutive digit positions, the first

and last of which are nonzero. For example, the error vector e =

(0 0 0 0 1 0 1 1 0 1 0 0 0 0 0) is a burst of length 6. A linear

code that is capable of correcting all error bursts of length /or

less but not all error bursts of length /+ 1 is called an 1-burst-

error-correcting code, or the code is said to have burst-error-

correcting capability 1. It is clear that for given code length it

and burst-error-correcting capability 1, it is desirable to

construct an (a, k) code with as small a redundancy n - k as

possible. Next, we establish certain restrictions on n - k for

given 1, or restrictions on I for Given 17 - k.

THEOREM 1: A necessary condition for an (a, k) linear code

to be able to correct all burst errors of length I or less is that no

burst of length 2/or less can be a codeword.

Proof: Suppose that there exists a burst r of length 2/or less as a

codeword. This codeword v can be expressed as a vector sum of

two bursts a and w of length 1 or less (except the degenerate

case, in which v is a burst of length 1). Then, a and w must be in

the same coset of a standard array for this code. If one of these

two vectors is used as a coset leader (correctable error pattern),

the other will be an uncorrectable error burst. As a result, this

code will not be able to correct all error bursts of length /or less.

Therefore, in order to correct all error bursts of length /or less,

no burst of length 2/or less can be a codeword.

THEOREM 2: The number of parity-check digits of an (n, k)

linear code that has no burst of length b or less as a codeword is

at least b (i.e., - k > b).

Proof: Consider the vectors whose nonzero components are

confined to the first b digit positions. There are a total of 2b of

them. N0 two such vectors can be in the same coset of a standard

array for this code otherwise, their vector sum, which is a burst

of length b or less, would be a codeword. Therefore, these 2/)

vectors must be in '21) distinct cosets. There are a total of ',"-k

cosets for an. (a, k) code. Thus, a - k must be at least equal to b

(i.e., a - k > b). It follows from Theorems 1 and 2 that there

must be a restriction on the number of parity-check digits of an

1-burst-error-correcting code.

THEOREM 3: The number of parity-check digits of an l-burst-

error-correcting code must be at least 2/; that is,

Proof: For a given n and k, Theorem 3 implies that the burst-

error-correcting capability of an (a k) code is at most [(r - k)/2_l

that is,- k this is an upper bound on the burst-error-correcting

capability of an (n, k) code and is called the Reiger bound [5].

Codes that meet the Reiger bound are said to be optimal. The

ratio is used as a measure of the burst-error-correcting

efficiency of a code. An optimal code has burst-error-correcting

efficiency equal to 1.

 It is possible to show that if an (a, k) code is designed to

correct all burst errors of length /or less and simultaneously to

detect all burst errors of length d > / or less, the number of

parity-check digits of the code must be at least I d.An/-burst-

error-correcting cyclic code can most easily be decoded by the

error-trapping technique presented in Section 5.7, with a slight

variation. Suppose that a codeword y(X) from an /-burst-error-

correcting (a, k) cyclic code is transmitted. Let r(X) and e(X) be

the received and error vectors, respectively. Let be the

syndrome of T(X). If the errors in e(X) are confined to the 1

high-order parity-check digit positions, X"-1.-1, …, X"-k-2, X"-

k-1, then the /high-order syndrome digits, ..5„-k-1, - s„-k-i,

match the errors of e(X), and the a - k – 1 low-order syndrome

digits, so, St, ° s„-k--/-1, are zeros. Suppose that the errors in

e(X) are not confined to the positions X"-k-i, • ..,, X" k 2, X"-k-

1 of r(X) but are confined to /consecutive positions of r(X)

(including the end-around case). Then, after a certain number of

cyclic shifts of r(X), say i cyclic shifts, the errors will be shifted

to the positions X"-k-/…, X"-k-2, X"-k-I. of T(i) (X), the ith

shift of T(X). Let s(i) (X) be the syndrome of v(i) (X). Then, the

first /high-order digits of sO (X) match the errors at the

positions X"-k-1, …, X"-k-2, X"-k-I of z(i) (X), and the rr - k -

/low-order digits of s(i) (X) are zeros. Using these facts, we may

trap the errors in the syndrome register by cyclic shifting r(X).

An error-trapping decoder for an /-burst-correcting cyclic code

is shown in Fig.1, where the received vector is shifted into the

syndrome register from the left end. The decoding procedure is

as follows:

Fig.1. An error-trapping decoder for burst-error-correcting

codes.

An Efficient Fault Tolerant Parallel Filters Based on Error Correction Codes

International Journal of VLSI System Design and Communication Systems

Volume.04, IssueNo.09, September-2016, Pages: 0781-0788

Step 1: The received vector r(X) is shifted into the syndrome

and buffer registers simultaneously. (If we do not want to

decode the received parity-check digits, the buffer register needs

only k stages.) As soon as r(X) has been shifted into the

syndrome register, the syndrome s(X) is formed.

Step 2: The syndrome register starts to shift with gate 2 on. As

soon as its - k – 1 leftmost stages contain only zeros, its 1

rightmost stages contain the burst-error pattern. The error

correction begins. There are three cases to be considered.

Step 3: If the n - k – 1 leftmost stages of the syndrome register

contain all zeros after the ith shift for 0 < i < n - k - I, the errors

of the burst e(X) are confined to the parity-check positions of

r(X). In this event, the k received information digits in the

buffer register are error-free. Gate 4 is then activated, and the k

error-free information digits in the buffer are shifted out to the

data sink If the a - k -1 leftmost stages of the syndrome register

never contain all zeros during the first n - k -1 shifts of the

syndrome register, the error burst is not confined to the - k

parity-check positions of r(X).

Step 4: If the n - k -1 leftmost stages of the syndrome register

contain all zeros after the (7 - k -1+ i)th shift of the syndrome

register for 1 < i < 1, the error burst is confined to positions X"',

…• Xi-1, of r(X). (This is an end-around burst). In this event,

the /- i digits contained in the 1- i rightmost stages of the

syndrome register match the errors at the parity-check positions,

X°, X I, …, X/-i-1 of r(X), and the i digits contained in the next

i stages of the syndrome register match the errors at the

positions X"-', …, X"-2, X"-1 of r(X). At this instant, a clock

starts to count from (n-k-l+i+1). The syndrome register is then

shifted (in step with the clock) with gate 2 turned off. As soon

as the clock has counted up to a - k, the i rightmost digits in the

syndrome register match the errors at the positions X"-i, …, X"-

2, X"-1 of r(X). Gates 3 and 4 are then activated. The received

information digits are read out of the buffer register and

corrected by the error digits shifted out from Tec syndrome

register.

Step 5: If the a - k – 1 leftmost stages of the syndrome register

never contain all zeros by the time that the syndrome register

has been shifted a k times, the received information highs are

read out of the buffer register one at a time with. gate 4

activated. At the same time the syndrome register is shifted with

gate 2 activated. As soon as the k - j leftmost stages, of the

syndrome register contain all zeros, tire digits in the rightmost

stages of the syndrome register match the errors in the net

received information digits to come out of the buffer register.

Gate 3 is then activated, and the erroneous information digits

are corrected by the digits coming out from the syndrome

register with gate 2 disabled.

 If the n–k–l leftmost stages of the syndrome register never

contain all zeros by the time the k information digits have been

read out of the buffer, an uncorrectable burst of errors has been

detected. With the decoder just described, the decoding process

takes Pat clock cycles; the first a clock cycles are required for

syndrome computation, and the next a clock cycles are needed

for error trapping and error correction. The n clock cycles for

syndrome computation are concurrent with the reception of the

received vector from the channel; no time delay occurs in this

operation. The second a clock cycles for error trapping and

correction represent decoding delay. In this decoder the received

vector is shifted into the syndrome register from the left end. If

the received vector is shifted into the syndrome register from

the right end, the decoding operation will be slightly different.

This decoder corrects only burst errors of length /or less. The

number of these burst-error patterns is n21/2', which for large a,

is only a small fraction of 2"2 correctable error patterns (coset

leaden). It is possible to modify the decoder is such a way that it

corrects all the correctable -burst errors of length a - k or less.

That is, besides correcting all the bursts of length/or less, the

decoder also corrects those bursts of length /+ 1 to a - It that are

used as coset leaders. This modified decoder operates as

follows. The entire received rector is lint shifted into the

syndrome register. Before performing the error Correction, the

syndrome register is cyclically shifted a time (with feedback

connections operative). During this cycling the length b of the

shortest burst that appears in the h rightmost stages of the

syndrome register is recorded by a Counter. This burst is

assumed to be the error burst added by the channel. Having

completed these pre-correction shifts, the decoder begins its

correction process. The syndromes register starts to shift again.

As soon as the shortest burst reappears in the b rightmost stages

of the syndrome register, the decoder starts to make corrections

as described earlier. This decoding is an optimum decoding for

burst-error-correcting codes that was proposed by Gallager.

C. Description of the Hamming Code

 Richard Hamming found a beautiful binary code that will

correct any single error and will detect any double error (two

separate errors).The Hamming code has been used for computer

RAM, and is a good choice for randomly occurring errors. (If

errors come in bursts, there are other good codes.) Unlike most

other error-correcting codes, this one is simple to understand.

The code uses extra redundant bits to check for errors, and

performs the checks with special check equations. A parity

check equation of a sequence of bits just adds the bits of the

sequence and insists that the sum be even (for even parity) or

odd (for odd parity). This section uses even parity.

Alternatively, one says that the sum is taken modulo 2 (divide

by 2 and take the remainder), or one says that the sum is taken

over the integers mod 2, Z2. A simple parity check will detect if

there has been an error in one bit position, since even parity will

change to odd parity. (Any odd number of errors will show up

as if there were just 1 error, and any even number of errors will

look the same as no error). One has to force even parity by

adding an extra parity bit and setting it either to 1 or to 0 to

make the overall parity come out even. It is important to realize

that the extra parity check bit participates in the check and is

itself checked for errors, along with the other bits.

 The Hamming code uses parity checks over a portion of the

positions in a block. Suppose there are bits in consecutive

positions from 1 to n-1. The positions whose position number is

a power of 2 are used as check bits, whose value must be

determined from the data bits. Thus the check bits are in

positions 1, 2, 4, 8, 16, ..., up to the largest power of 2 that is

B. UMADEVI, RAMESH BABU

International Journal of VLSI System Design and Communication Systems

Volume.04, IssueNo.09, September-2016, Pages: 0781-0788

less than or equal to the largest bit position. The remaining

positions are reserved for data bits. Each check bit has a

corresponding check equation that covers a portion of all the

bits, but always includes the check bit itself. Consider the binary

representation of the position numbers: 1 = 12, 2 = 102, 3 = 112,

4 = 1002, 5 = 1012, 6 = 1102, and so forth. If the position

number has a 1 as its rightmost bit, then the check equation for

check bit 1 covers those positions. If the position number has a

1 as its next-to-rightmost bit, then the check equation for check

bit 2 covers those positions. If the position number has a 1 as its

third-from-rightmost bit, then the check equation for check bit 4

covers those positions. Continue in this way through all check

bits. Table 1 summarizes this pattern.

Table 1. Position of the parity checks for the first 17

positions of the Hamming code (Check bits

are in positions 1, 2, 4, 8, and 16, in red italic).

 Table 2: The below table assumes one starts with data bits

1101101 (in black below). The check equations above are used

to determine values for check bits in positions 1, 2, 4, and 8, to

yield the word 11101010101 below, with check bits in red italic

here and below.

Table 2. Implementation of Hamming code for data bits

1101101.

 Intuitively, the check equations allow one to ``zero-in'' on the

position of a single error. For example, suppose a single bit is

transmitted in error. If the first check equation fails, then the

error must be in an odd position, and otherwise it must be in an

even position. In other words, if the first check fails, the

position number of the bit in error must have its rightmost bit

(in binary) equal to 1; otherwise it is zero. Similarly the second

check gives the next-to-rightmost bit of the position in error,

and so forth. Table 3: The below table gives the result of a

single error in the decimal position 11 (changed from a1toa0).

Three of the four parity checks fail, as shown below. Adding the

decimal position number of each failing check gives the position

number of the error bit, decimal 11 in this case the below

discussion shows how to get single-error correction with the

Hamming code. One can also get double-error detection by

using a single extra check bit, which is in position 0. (All other

positions are handled as above.) The check equation in this case

covers all bits, including the new bit in position 0.

Table 3. Results of a single error in decimal position 11

 In case of a single error, this new check will fail. If only the

new equation fails, but none of the others, then the position in

error is the new 0th check bit, so a single error of this new bit

can also be corrected. In case of two errors, the overall check

(using position 0) will pass, but at least one of the other check

equations must fail. This is how one detects a double error. In

this case there is not enough information present to say anything

about the positions of the two bits in error. Three or more errors

at the same time can show up as no error, as two errors detected,

or as a single error that is ``corrected'' with a bogus correction.

Notice that the Hamming code without the extra 0th check bit

would correct a double error in some bogus position as if it were

a single error. Thus the extra check bit and the double error

detection are very important for this code. Notice also that the

check bits themselves will also be corrected if one of them is

transmitted in error (without any other errors).

III. IMPLEMENTATION OF PROPOSED SYSTEM

 A discrete time filter implements the following equation:

 𝑦 𝑛 = 𝑥[𝑛 − 𝑙]∞
𝑙=0 . ℎ[𝑙] (1)

where x[n] is the input signal, y[n] is the output, and h[l] is the

impulse response of the filter. When the response h[l] is

nonzero, only for a finite number of samples, the filter is known

as a FIR filter, otherwise the filter is an infinite impulse

response (IIR) filter. There are several structures to implement

both FIR and IIR filters.

 In the following, a set of k parallel filters with the same

response and different input signals are considered. These

parallel filters are illustrated in Fig. 2. This kind of filter is

An Efficient Fault Tolerant Parallel Filters Based on Error Correction Codes

International Journal of VLSI System Design and Communication Systems

Volume.04, IssueNo.09, September-2016, Pages: 0781-0788

found in some communication systems that use several channels

in parallel. In data acquisition and processing applications is

also common to filter several signals with the same response.

An interesting property for these parallel filters is that the sum

of any combination of the outputs yi [n] can also be obtained by

adding the corresponding inputs xi [n] and filtering the resulting

signal with

Fig.2. Parallel filters with the same response.

the same filter h[l]. For example

 𝑦1 𝑛 + 𝑦2 𝑛 = 𝑥1 𝑛 − 𝑙 + 𝑥2 𝑛 − 𝑙 . ℎ[𝑙]∞
𝑙=0 (2)

 This simple observation will be used in the following to

develop the proposed fault tolerant implementation. The new

technique is based on the use of the ECCs. A simple ECC takes

a block of k bits and produces a block of n bits by adding n−k

parity check bits. The parity check bits are XOR combinations

of the k data bits. By properly designing those combinations it is

possible to detect and correct errors. As an example, let us

consider a simple Hamming code with k = 4 and n = 7. In this

case, the three parity check bits p1, p2, p3 are computed as a

function of the data bits d1, d2, d3, d4 as follows:

𝑝1 = 𝑑1⨁𝑑2⨁𝑑3

𝑝2 = 𝑑1⨁𝑑2⨁𝑑4

 𝑝3 = 𝑑1⨁𝑑3⨁𝑑4 (3)

 The data and parity check bits are stored and can be

recovered later even if there is an error in one of the bits. This is

done by re-computing the parity check bits and comparing the

results with the values stored. In the example considered, an

error on d1 will cause errors on the three parity checks; an error

on d2 only in p1 and p2; an error on d3 in p1 and p3; and finally

an error on d4 in p2 and p3. Therefore, the data bit in error can

be located and the error can be corrected. This is commonly

formulated in terms of the generating G and parity check H

matrixes. For the Hamming code considered in the example,

those are

 𝐺 =

1
0
0
0

0
1
0
0

0
0
1
0

0
0
0
1

1
1
1
0

1
1
0
1

1
0
1
1

 (4)

 𝐻 =
1
1
1

1
1
0

1
0
1

0
1
1

1
0
0

0
1
0

0
0
1
 (5)

 Encoding is done by computing y = x • G and error

detection is done by computing s = y • H
T
, where the operator •

is based on module two addition (XOR) and multiplication.

Correction is done using the vector s, known as syndrome, to

identify the bit in error. The correspondence of values of s to

error position is captured in Table 4.

TABLE 4. Error Location in the Hamming Code

Fig.3. Proposed scheme for four filters and a Hamming code

 Once the erroneous bit is identified, it is corrected by simply

inverting the bit. This ECC scheme can be applied to the

parallel filters considered by defining a set of check filters zj.

For the case of four filters y1, y2, y3, y= and the Hamming code,

the check filters would be

𝑧1 𝑛 = 𝑥1 𝑛 − 𝑙 + 𝑥2 𝑛 − 𝑙 + 𝑥3 𝑛 − 𝑙

∞

𝑙=0

. ℎ[𝑙]

𝑧2 𝑛 = 𝑥1 𝑛 − 𝑙 + 𝑥2 𝑛 − 𝑙 + 𝑥4 𝑛 − 𝑙

∞

𝑙=0

. ℎ[𝑙]

 𝑧3 𝑛 = 𝑥1 𝑛 − 𝑙 + 𝑥3 𝑛 − 𝑙 + 𝑥4 𝑛 − 𝑙 ∞
𝑙=0 . ℎ[𝑙] (6)

and the checking is done by testing if

𝑧1 𝑛 = 𝑦1 𝑛 + 𝑦2 𝑛 + 𝑦3 𝑛
𝑧2 𝑛 = 𝑦1 𝑛 + 𝑦2 𝑛 + 𝑦4 𝑛

 𝑧3 𝑛 = 𝑦1 𝑛 + 𝑦3 𝑛 + 𝑦4 𝑛 (7)

 For example, an error on filter y1 will cause errors on the

checks of z1, z2, and z3. Similarly, errors on the other filters will

cause errors on a different group of zi. Therefore, as with the

traditional ECCs, the error can be located and corrected. The

overall scheme is illustrated on Fig. 3. It can be observed that

B. UMADEVI, RAMESH BABU

International Journal of VLSI System Design and Communication Systems

Volume.04, IssueNo.09, September-2016, Pages: 0781-0788

correction is achieved with only three redundant filters. For the

filters, correction is achieved by reconstructing the erroneous

outputs using the rest of the data and check outputs. For

example, when an error on y1 is detected, it can be corrected by

making

 𝑦𝑐1 𝑛 = 𝑧1 𝑛 − 𝑦2 𝑛 − 𝑦3 𝑛 (8)

 Similar equations can be used to correct errors on the rest of

the data outputs. In our case, we can define the check matrix as

 𝐻 =
1
1
1

1
1
0

1
0
1

0
1
1

−1
0
0

0
−1
0

0
0
−1

 (9)

and calculate s = yH
T
 to detect errors. Then, the vector s is also

used to identify the filter in error. In our case, a nonzero value in

vector s is equivalent to 1 in the traditional Hamming code. A

zero value in the check corresponds to a 0 in the traditional

Hamming code.

 It is important to note that due to different finite precision

effects in the original and check filter implementations, the

comparisons in (7) can show small differences. Those

differences will depend on the quantization effects in the filter

implementations that have been widely studied for different

filter structures. The interested reader is referred to for further

details. Therefore, a threshold must be used in the comparisons

so that values smaller than the threshold are classified as 0. This

means that small errors may not be corrected. This will not be

an issue in most cases as small errors are acceptable. The

detailed study of the effect of these small errors on the signal to

noise ratio at the output of the filter is left for future work. The

reader can get more details on this type of analysis. With this

alternative formulation, it is clear that the scheme can be used

for any number of parallel filters and any linear block code can

be used. The approach is more attractive when the number of

filters k is large. For example, when k = 11, only four redundant

filters are needed to provide single error correction. This is the

same as for traditional ECCs for which the overhead decreases

as the block size increases.

 The additional operations required for encoding and decoding

are simple additions, subtractions, and comparisons and should

have little effect on the overall complexity of the circuit. This is

illustrated in which a case study is presented. In the discussion,

so far the effect of errors affecting the encoding and decoding

logic has not been considered. The encoder and decoder include

several additions and subtractions and therefore the possibility

of errors affecting them cannot be neglected. Focusing on the

encoders, it can be seen that some of the calculations of the zi

share adders. For example, looking at (6), z1 and z2 share the

term y1 + y2. Therefore, an error in that adder could affect both

z1 and z2 causing a mis-correction on y2. To ensure that single

errors in the encoding logic will not affect the data outputs, one

option is to avoid logic sharing by computing each of the zi

independently. In that cases, errors will only affect one of the zi

outputs and according to Table I, the data outputs yj will not be

affected. Similarly, by avoiding logic sharing, single errors in

the computation of the s vector will only affect one of its bits.

The final correction elements such as that in (8) need to be

tripled to ensure that they do not propagate errors to the outputs.

However, as their complexity is small compared with that of the

filters, the impact on the overall circuit cost will be low. This is

confirmed by the results presented for a case study.

IV, SIMULATION RESULTS

Fig.4. Program Window.

Fig.5. RTL Schematic generater

 In this Fig6 shows, the block diagram of a top level circuit

whitch consisting of inputs of parallel filter and outputs of

parallel filter. X1,X2,X3,X4 are the input of the parallel filter,h

is the impulse response of the parallel filter,Y1,Y2,Y3,Y4 are

the output of the parallel filter,P1,P2,P3, are thecheck bits of the

output response.

Fig.6. RTL Schematic of Parallel Filter.

An Efficient Fault Tolerant Parallel Filters Based on Error Correction Codes

International Journal of VLSI System Design and Communication Systems

Volume.04, IssueNo.09, September-2016, Pages: 0781-0788

 In this Fig7 shows, the RTL Schematic of a top module

circuit whitch consisting of internal schematic of acircuit.

Fig.7. Internal RTL Schematic.

RTL Schematic for Parallel Filtesr trigger:

Fig.8. RTL Schematic Trigger

Fig.9. RTL Schematic overview

V. CONCLUSION AND FUTURE SCOPE

A. Conclusion

 This brief has presented a new scheme to protect parallel

filters that are commonly found in modern signal processing

circuits. The approach is based on applying ECCs to the parallel

filters outputs to detect and correct errors. The scheme can be

used for parallel filters that have the same response and process

different input signals. A case study has also been discussed to

show the effectiveness of the scheme in terms of error

correction and also of circuit overheads. The technique provides

larger benefits when the number of parallel filters is large.

B. Future Scope

 The proposed scheme can also be applied to the IIR filters.

Future work will consider the evaluation of the benefits of the

proposed technique for IIR filters. The extension of the scheme

to parallel filters that have the same input and different impulse

responses is also a topic for future work. The proposed scheme

can also be combined with the reduced precision replica

approach presented in [3] to reduce the overhead required for

protection. This will be of interest when the number of parallel

filters is small as the cost of the proposed scheme is larger in

that case. Another interesting topic to continue this brief is to

explore the use of more powerful multi bit ECCs, such as Bose–

Chaudhuri–Hocquenghem codes, to correct errors on multiple

filters.

VI. REFERENCES

[1] M. Nicolaidis, “Design for soft error mitigation,” IEEE

Trans. Device Mater. Rel., vol. 5, no. 3, pp. 405–418, Sep.

2005.

[2] A. Reddy and P. Banarjee “Algorithm-based fault detection

for signal processing applications,” IEEE Trans. Comput., vol.

39, no. 10, pp. 1304–1308, Oct. 1990.

[3] B. Shim and N. Shanbhag, “Energy-efficient soft error-

tolerant digital signal processing,” IEEE Trans. Very Large

Scale Integr. (VLSI) Syst., vol. 14, no. 4, pp. 336–348, Apr.

2006.

[4] T. Hitana and A. K. Deb, “Bridging concurrent and non-

concurrent error detection in FIR filters,” in Proc. Norchip

Conf., 2004, pp. 75–78.

[5] Y.-H. Huang, “High-efficiency soft-error-tolerant digital

signal processing using fine-grain subword-detection

processing,” IEEE Trans. Very Large Scale Integr. (VLSI)

Syst., vol. 18, no. 2, pp. 291–304, Feb. 2010.

[6] S. Pontarelli, G. C. Cardarilli, M. Re, and A. Salsano,

“Totally fault tolerant RNS based FIR filters,” in Proc. IEEE

IOLTS, Jul. 2008, pp. 192–194.

[7] Z. Gao, W. Yang, X. Chen, M. Zhao, and J. Wang, “Fault

missing rate analysis of the arithmetic residue codes based fault-

tolerant FIR filter design,” in Proc. IEEE IOLTS, Jun. 2012, pp.

130–133.

[8] P. Reviriego, C. J. Bleakley, and J. A. Maestro, “Strutural

DMR: A technique for implementation of soft-error-tolerant

FIR filters,” IEEE Trans. Circuits Syst., Exp. Briefs, vol. 58, no.

8, pp. 512–516, Aug. 2011.

[9] P. P. Vaidyanathan. Multirate Systems and Filter Banks.

Upper Saddle River, NJ, USA: Prentice-Hall, 1993.

B. UMADEVI, RAMESH BABU

International Journal of VLSI System Design and Communication Systems

Volume.04, IssueNo.09, September-2016, Pages: 0781-0788

[10] A. Sibille, C. Oestges, and A. Zanella, MIMO: From

Theory to Implementation. San Francisco, CA, USA: Academic

Press, 2010.

[11] P. Reviriego, S. Pontarelli, C. Bleakley, and J. A. Maestro,

“Area efficient concurrent error detection and correction for

parallel filters,” IET Electron. Lett., vol. 48, no. 20, pp. 1258–

1260, Sep. 2012.

[12] A. V. Oppenheim and R. W. Schafer, Discrete Time Signal

Processing. Upper Saddle River, NJ, USA: Prentice-Hall 1999.

[13] S. Lin and D. J. Costello, Error Control Coding, 2nd ed.

Englewood Cliffs, NJ, USA: Prentice-Hall. 2004.

[14] R. W. Hamming, “Error correcting and error detecting

codes,” Bell Syst. Tech. J., vol. 29, pp. 147–160, Apr. 1950.

