An FPGA Implementation of Real-Time Finger-Vein Recognition System for Security Levels

DURGA VEERA PRASAD.V¹, A.ARUNKUMAR GUDIVADA²
¹PG Scholar, Dept of VLSID, Sri Sai Aditya Institute of Science & Technology, AP, India.
²Assistant Professor, Dept of ECE, Sri Sai Aditya Institute of Science & Technology, AP, India.

Abstract: In this project, we propose a real-time embedded finger-vein recognition system (FVRS) for authentication on mobile devices. The system is implemented on an embedded platform and equipped with a novel finger-vein recognition algorithm. The proposed system consists of four hardware modules: radio frequency identification system, image acquisition module, embedded main board, and human machine communication module. RFID module will start the very initial communication between the user and the device the image acquisition module is used to collect finger-vein images. The Spartan 3AN FPGA is used to execute the finger-vein recognition algorithm and communicate with the peripheral device. The human machine communication module (LED or keyboard) is used to display recognition results and receive inputs from users.

Keywords: Finger Vein Recognition System, RFID Module, Spartan 3AN FPGA, Communication Module, Image Acquisition Module.

I. INTRODUCTION

Today, security is very much essential in all kind of activities. Illegal activities are happening in every place today. So government and corporate sections are concentrating mainly on the security levels with their every invention. This will bring privacy all over the world. So in a thought of bringing privacy through security level, this project has been developed[2]. This FVR system mainly uses three divisions which are image acquisition module, embedded main board, and human machine communication module. Each unit is having its own major role over the project. In this paper, two major areas have been focused. Those are authentication and identification[3]. FVR system performs the authentication function with the finger vein recognition[4],[6],[7]. Every time when the user is going to use the system, the finger vein of will be scanned and comparison will be done. Finger vein recognition is very effective when compared with pattern recognition, pin number security the other type of Biometric security methods like finger print security, palm print security, image scanning and some recognition techniques[1]. FVR system uses the vein scanning. As it is related to the biological factor, it is very difficult to change the vein information of a user. So, this system can provide more security than any other security level. In this FVR system, we are focusing on high security with RFID technology[5].

Initially each and every user will be given with one RFID secret card. This will make an effective initial communication between the user and the device. This technique will make the device to extract the user information from its memory. Fig.1 will illustrates this feature. In FVR system, the RFID module is used to collect the user data base. With this system, an unique code will be generated for each and every user for storing the finger vein details in the server. Here an active RFID technology is used for creating the secret signal[8]. The encoded signal will be continuously transmitted by the card if it is in on state. This RFID will reduce the complexity of the image acquisition module. As the RFID have an unique signal it can store only one vein information. So authentication and identification will become soon. Because of these features the FVRS will be a faster recognition system[5].

Fig.1. FVRS – Active secret card section.
Fig.2. FVRS – Mobile Recognition unit.

In this section, RF receiver module is attached with the embedded control unit. This unit receives the secret digital data from the card and it will be given to the controller. In the FVRS recognition unit, vein images will be stored in the image acquisition module[6] as shown in Fig.2. If RF receiver receives any digital code, then automatically code verification will be done inside the embedded control unit. If the code is matched then an asynchronous command will be given to the image acquisition module. Then the vein image comparison will be done inside the processor. If the image is matched then automatically the device will go to its working state.

II. DESIGN AND IMPLEMENTATION

This project is implemented in an effective way to improve the security. Initially an active RF method is used to provide a basic security and to initialize the communication between the FVRS mobile device and the user. For a user single card will be provided. This card contains a digital data which will act as a key to the image recognition unit. The FVRS – mobile recognition unit first checks the address bits from the transmitter section[7]. If address is matched then the corresponding data signal will be passed to the controller unit. Through this method identification of the user will be implemented effectively. Now the controller unit will send a signal to the image acquisition unit to open the data base vein detail. Image acquisition unit will process the user’s vein image with the database image. This will work through different image processing techniques. For an easy identification alert system is also embedded in this unit. If any mismatch is found then automatically the ECU will alert the entire system continuously. At the same time intimation will be given to the user’s security number. This intimation is common for authentication [9]. If anything happens in the FVRS - Mobile recognition unit, then the corresponding result will be transferred to the security number without any delay. If the vein image is matched in the image acquisition module then, a secret password will be send to the security number of the user. The user should enter the particular password for further accessing. This will bring more security to the user.

III. OVERVIEW OF THE FVRS UNIT

The FVRS – Mobile unit has the following important module section. Those are radio frequency identification system, image acquisition module, embedded main board, and human machine communication module. These sections which will play the important role. In the existing method, there is a long list of available biometric patterns, and many such systems have been developed and implemented, including those for the face, iris, fingerprint, palm print, hand shape, voice, signature, and gait. Notwithstanding this great and increasing variety of biometrics patterns, no biometric has yet been developed that is perfectly reliable or secure[1]. For example, fingerprints and palm prints are usually frayed; voice, signatures, hand shapes and iris images are easily forged; face recognition can be made difficult by occlusions or face-lifts and biometrics, such as fingerprints and iris and face recognition, are susceptible to spoofing attacks, that is, the biometric identifiers can be copied and used to create artefacts that can deceive many currently available biometric devices[2]. In this Proposed FVRS – Mobile recognition unit, Finger vein recognition unit is used. The finger-vein is a promising biometric pattern for personal identification in terms of its security and convenience. The vein is hidden inside the body and is mostly invisible to human eyes, so it is difficult to forge or steal. The non-invasive and contactless capture of fingers veins ensures both convenience and hygiene for the user, and is thus more acceptable. The finger-vein pattern can only be taken from a live body. Therefore, it is a natural and convincing proof that the subject whose finger-vein is successfully captured is alive.

IV. SYSTEM HARDWARE

The FPGA industry sprouted from programmable read-only memory (PROM) and programmable logic devices (PLDs). PROMs and PLDs both had the option of being programmed in batches in a factory or in the field (field programmable), however programmable logic was hard-wired between logic gates.[6] In the late 1980s the Naval Surface Warfare Department funded an experiment proposed by Steve Casselman to develop a computer that would implement 600,000 reprogrammable gates. Casselman was successful and a patent related to the system was issued in 1992.[6] Some of the industry’s foundational concepts and technologies for programmable logic arrays, gates, and logic blocks are founded in patents awarded to David W. Page and LuVerne R. Peterson in 1985.[7][8] Xilinx
An FPGA Implementation of Real-Time Finger-Vein Recognition System for Security Levels

Co-Founders, Ross Freeman and Bernard Vonderschmitt, invented the first commercially viable field programmable gate array in 1985 – the XC2064.[9] The XC2064 had programmable gates and programmable interconnects between gates, the beginnings of a new technology and market. The XC2064 boasted a mere 64 configurable logic blocks (CLBs), with two 3-input lookup tables (LUTs). More than 20 years later, Freeman was entered into the National Inventors Hall of Fame for his invention

Xilinx continued unchallenged and quickly growing from 1985 to the mid-1990s, when competitors sprouted up, eroding significant market-share. By 1993, Actel was serving about 18 percent of the market. The 1990s were an explosive period of time for FPGAs, both in sophistication and the volume of production. In the early 1990s, FPGAs were primarily used in telecommunications and networking. By the end of the decade, FPGAs found their way into consumer, automotive, and industrial applications. FPGAs got a glimpse of fame in 1997, when Adrian Thompson, a researcher working at the University of Sussex, merged genetic algorithm technology and FPGAs to create a sound recognition device. Thomson’s algorithm configured an array of 10 x 10 cells in a Xilinx FPGA chip to discriminate between two tones, utilising analogue features of the digital chip. The application of genetic algorithms to the configuration of devices like FPGAs is now referred to as Evolvable hardware.

A. Wireless Communication
1. RF Communication
Radio Frequency: is any frequency within the electromagnetic spectrum associated with radio wave propagation. When an RF current is supplied to an antenna, an electromagnetic field is created that then is able to propagate through space. Many wireless technologies are based on RF field propagation.

Fig.3. RF Transmitter.

2. Transmitter: The TWS-434 extremely small, and are excellent for applications requiring short-range RF remote controls. The TWS-434 modules do not incorporate internal encoding. If simple control or status signals such as button presses or switch closures want to send, consider using an encoder and decoder IC set that takes care of all encoding, error checking, and decoding functions. The transmitter output is up to 8mW at 433.92MHz with a range of approximately 400 foot (open area) outdoors. Indoors, the range is approximately 200 foot, and will go through most walls as shown in Fig.3. The TWS-434 transmitter accepts both linear and digital inputs can operate from 1.5 to 12 Volts-DC, and makes building a miniature hand-held RF transmitter very easy.

3. RF receiver:
RWS-434: The receiver also operates at 433.92MHz, and has a sensitivity of 3uV. The WS-434 receiver operates from 4.5 to 5.5 volts-DC, and has both linear and digital outputs. A 0 volt to Vcc data output is available on pins. This output is normally used to drive a digital decoder IC or a microprocessor which is performing the data decoding. The receiver’s output will only transition when valid data is present. In instances, when no carrier is present the output will remain low. The RWS-434 modules do not incorporate internal decoding as shown in Fig.4. If you want to receive Simple control or status signals such as button presses or switch closes, you can use the encoder and decoder IC set described above. Decoders with momentary and latched outputs are available

Fig.4. RF receiver.

4. GSM
A GSM modem is a wireless modem that works with a GSM wireless network. Global system for mobile communication (GSM) is a globally accepted standard for digital cellular communication. GSM is the name of a standardization group established in 1982 to create a common European mobile telephone standard that would formulate specifications for a pan-European mobile cellular radio system operating at 900 MHz. GSM provides recommendations, not requirements. The GSM specifications define the functions and interface requirements in detail but do not address the hardware. The reason for this is to limit the designers as little as possible but still to make it possible for the operators to buy equipment from different suppliers. The GSM network is divided into three major systems: the switching system (SS), the base station system (BSS), and the operation and support system (OSS). The basic GSM network elements are shown in below fig.5.

GSM modems support an extended set of AT commands. These extended AT commands are defined in the GSM standards. With the extended AT commands, you can do things like:
- Reading, writing and deleting SMS messages.
- Sending SMS messages.
- Monitoring the signal strength.
- Monitoring the charging status and charge level of the battery.
- Reading, writing and searching phone book entries.

B. Sending the Message

To send the SMS message, type the following command:

```
AT+CMGS="+31638740161" <ENTER>
```

Replace the above phone number with your own cell phone number. The modem will respond with:

```
> (Response from the modem)
```

You can now type the message text and send the message using the `<CTRL>-Z` key combination:

```
Hello World!<CTRL-Z>
```

Here CTRL-Z is keyword for sending anSMS through the mobile device. After some seconds the modem will respond with the message ID of the message, indicating that the message was sent correctly:

```
+CMGS: 62
```

V. IMAGE ACQUISITION

A color model is an abstract mathematical model describing the way colors can be represented as tuples of numbers, typically as three or four values color components (e.g. RGB and CMYK are color models). However, a color model with no associated mapping function to an absolute color space is a more or less arbitrary color system with no connection to any globally understood system of color interpretation. Adding a certain mapping function between the color model and a certain reference color space results in a definite "footprint" within the reference color space. This "footprint" is known as a gamut, and, in combination with the color model, defines a new color space. For example, Adobe RGB and RGB are two different absolute color spaces, both based on the RGB model.

In the generic sense of the definition above, color spaces can be defined without the use of a color model[11],[12]. These spaces, such as Pantone, are in effect a given set of names or numbers which are defined by the existence of a corresponding set of physical color swatches. This article focuses on the mathematical model concept.

A. Recognition

Applications range from tasks such as industrial machine vision systems which, say, inspect bottles speeding by on a production line, to research into artificial intelligence and computers or robots that can comprehend the world around them. The computer vision and machine vision fields have significant overlap. Computer vision covers the core technology of automated image analysis which is used in many fields as shown in Fig.6. Machine vision usually refers to a process of combining automated image analysis with other methods and technologies to provide automated inspection and robot guidance in industrial applications[13]. As a scientific discipline, computer vision is concerned with the theory behind artificial systems that extract information from images. The image data can take many forms, such as video sequences, views from multiple cameras, or multidimensional data from a medical scanner[14].

B. Wavelet Analysis

The discrete wavelet transform (DWT) was developed to apply the wavelet transform to the digital world. Filter banks are used to approximate the behaviour of the continuous wavelet transform[11] as shown in Fig.7. The signal is decomposed with a high-pass filter and a low-pass filter. The coefficients of these filters are computed using mathematical analysis and made available to you.

![Discrete Wavelet Transform](image_url)
An FPGA Implementation of Real-Time Finger-Vein Recognition System for Security Levels

Where,
- LPd: Low Pass Decomposition Filter
- HPd: High Pass Decomposition Filter
- LPr: Low Pass Reconstruction Filter
- HPr: High Pass Reconstruction Filter

VI. DESIGN FLOW
The flow diagram of FVRS- Mobile unit is given below Fig.8. It shows all the step by step function of finger vein recognition system.

Fig.8. Flow diagram of FVRS.

Initially the device will wait for an RF signal from the user to activate the communication between the embedded control unit and the image acquisition unit. Then the finger vein image of the user will be compared with the unique database image. Then the authentication result will be send to the security number of the user.

VII. CONCLUSION
Security is becoming essential in all kind of application. This project is implemented in a way to improve the security level. As the finger-vein is a promising biometric pattern for personal identification in terms of its security and convenience. Also the vein is hidden inside the body and is mostly invisible to human eyes, so it is difficult to forge or steal. The non-invasive and contactless capture of finger veins ensures both convenience and hygiene for the user, and is thus more acceptable. So this system is more hopeful in improving the security level.

VIII. REFERENCE

Author's Profile:

Durga Veera Prasad V, M.Tech (VLSID),
Sri Sai Aditya Institute of Sci. & Tech,
AP, India.

A Arunkumar Gudivada, Assistant Professor, Dept Of ECE, Sri Sai Aditya Institute of Sci. & Tech, AP, India.